Statistics

Lecture 1

Feb 19-8:47 AM

Basic Math Review:

1) Reduce $\frac{75}{120}=\frac{3 \cdot 25}{3 \cdot 40}=\frac{5 \cdot 5}{5 \cdot 8}=\frac{5}{8}$
2) $\frac{5}{8}$
3) Convert . 025 to
a) Reduce fraction
$.025=\frac{25}{1000}=\frac{5 \cdot 5}{5 \cdot 200}=\frac{5 \cdot 1}{3 \cdot 40}=\frac{1}{40}$ a) $\frac{1}{40}$
b) \% Notation

$$
.025(100) \%=2.5 \%
$$

b) 2.5%
3) I surveyed 250 students and 8\% of them were left-handed.

How many were left-handed?
what is 8\%) 250?

$$
x=(.08) \cdot 250=20
$$

Call. \rightarrow use TI-83 or TI-84
In a class of 40 students, 5 were late on first day. What $\%$ of them were late on first day? 5 is what $\%$ of 40?

$$
\begin{gathered}
\frac{5}{40} \cdot 100=\frac{500}{40}=\frac{50}{4}=\frac{25}{2} \\
=12.5
\end{gathered}
$$

Scientific Notation
used to write very large or very Small numbers

$$
\begin{aligned}
& N \times 10^{n} \sum_{\text {any integer }} \\
& 1 \leq N<10 \quad\{\cdots,-3,-2,-1,0,1,2, \ldots\} \\
& 2.8 \times 10^{7}, \quad 1.25 \times 10^{-4} \\
& 2.8 \times 10^{7}=2.80000000=28,000,000 \\
& 1.25 \times 10^{-4}=00001.25=0.000125 \\
& \text { optional }
\end{aligned}
$$

Simplify

$$
\begin{aligned}
\frac{5 \cdot 800-40^{2}}{5(5-1)} & =\frac{4000-1600}{20} \\
& =\frac{2400}{20}=120
\end{aligned}
$$

Simplify, Round to 1 -decimal

$$
\frac{36-28}{\frac{6}{\sqrt{16}}}=\frac{8}{\frac{6}{4}}=\frac{8}{\frac{3}{2}}=\frac{8}{1.5}=5 . \overline{3}
$$

Simplify, Round to 2-decimal places 5.3

$$
\begin{aligned}
1.96 \cdot \sqrt{\frac{.88)(.2)}{25}} & =1.96 \cdot \sqrt{\frac{.16}{25}} \frac{.16}{} \\
& =1.96 \cdot \frac{.4}{5}=.1568
\end{aligned}
$$

! Factorial

$$
\begin{aligned}
& 0!=1 \\
& 1!=1 \\
& 2!=2 \cdot 1=2 \\
& 3!=3 \cdot 2 \cdot 1=6
\end{aligned}
$$

$$
n!=n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1
$$

$$
5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120
$$

$$
\begin{aligned}
\frac{8!}{4!} & =\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 2 \cdot 1} \\
& =8 \cdot 7 \cdot 6 \cdot 5=1680
\end{aligned}
$$

Simplify

$$
\frac{7!}{4!\cdot 3!}=\frac{7 \cdot 6 \cdot 5 \cdot 4!}{4!\cdot 3 \cdot 2 \cdot 1}=\frac{35}{1}=35
$$

Simplify $\frac{5(180)-30^{2}}{5(5-1)}=\frac{900-900}{20}=\frac{0}{20}=0$
Do not use (a) for 0.

In a deck of playing cards with 50 cards total, there are 7 face Cards. what $\%$ of these cards are face cards? 7 is what / of 50?

$$
\begin{aligned}
& \frac{7}{50}=\frac{p}{100} \quad \text { Cross-Multiply } \\
& 50 p=700 \\
& P=\frac{700}{50} \quad 14 \% \\
& P=14 \quad 1
\end{aligned}
$$

Given $\quad y=5.8 x-40$

1) Find y when $x=15$

$$
y=5.8(15)-40=47
$$

2) Sind x when $y=40 \rightarrow 80=5.8 x$

$$
\begin{aligned}
& 40=5.8 \times-40 \\
& 40+40=5.8 x
\end{aligned}\left\{\begin{array}{l}
x=\frac{80}{5.8} \\
x=13.793 \ldots
\end{array}\right.
$$

Round to whole $x \approx 14$

Graph $4 x-5 y=20$

Plot the points $(0,-3) \dot{\varepsilon}(5,4)$, then find the eau of the line that contains them.

$$
\begin{aligned}
& y=m x+b \\
& y=\frac{7}{5} x-3
\end{aligned}
$$

I surveyed 80 students.
35 were taking Math.
Total $=80$

Make Vern Diagram
It is a way
to organize
and display the information.

Mar 1-9:02 AM
what is statistics?
It is about collecting information (data), organize them, graph them, perform Certain calculations, and draw conclusion from them with some degree of confidence

Two Branches

1) Descriptive

Collect data, organize, graph, do computations
2) Inferential To draw conclusion and make predictions

Entire field of interest \rightarrow Population Data randomly Selected \rightarrow Sample from Population

Population \leftrightarrow Parameter
Sample \longleftrightarrow Statistic
median income for all nurses in LA is $\$ 6800 / \mathrm{mol}$
Average age of 200 Students randomly Selected was 28.5 Yrs.

Mar 1-9:44 AM

Level of measure meats:

1) Nominal Small, Med, Large Red, white, Blue
2) Ordinal Small, Med, Large Zip Codes
3) Ratio $\quad S_{\text {mall }}(10 \mathrm{Oz})$ Med. $(150 z)$
4) Interval (Range of values) $90 \%-100 \% \rightarrow A$

Mar 1-9:54 AM

Sampling Method:

1) Systematic : Every Kith item Selected every 10 th call recorded.
2) Stratified: Divide into groups, Select few from each group.
16 Females (Select 5)
10 Males (Select 3)
3) cluster: Divide into groups,

Select few groups,
Collect data from all members of those selected groups.
college offers 2000 classes.
Select 100 classes
Ask all students from these 100 classes to do a Survey.
4) Random/ Convenience
"Least Reliable Method"

Experiment vs observation
observation: observe (Notice) changes due to no action taken

Experiment : Notice changes due to action taken

Simple Random Sample: All outcomes have Same chance of
I select 1 student Selection.

$$
\begin{aligned}
& \text { Consider the Sample below } \\
& \begin{array}{lllll}
1 & 2 & 3 & 3 & 7
\end{array} \\
& \text { 1) Sample Size } n=5 \\
& \text { 2) Min. } 1, \max =7 \\
& \text { 3) } \text { Range }=\operatorname{Max}-\operatorname{Min}=7-1=6 \\
& \text { 4) } \text { Midrange }=\frac{\max +M_{\text {in }}}{2}=\frac{7+1}{2}=\frac{8}{2}=4 \\
& \text { 5) Mode } 3 \\
& \text { 6) } \sum_{\infty} x=\text { Sum of data elements } \\
& \text { Summation }=1+2+3+3+7=16 \\
& \text { 7) } \sum^{d} x^{2}=1^{2}+2^{2}+3^{2}+3^{2}+7^{2} \\
& =1+4+9+9+49=72 \\
& \text { 8) } \frac{\sum x}{n}=\frac{16}{5}=3.2 \\
& \text { 9) } \frac{n \sum x^{2}-(\Sigma x)^{2}}{n(n-1)}=\frac{5 \cdot 72-16^{2}}{5(5-1)} \\
& \frac{104}{20} \sqrt{5.2]} \\
& \text { 10) } \sqrt{\text { Last Answer }}=\sqrt{5.2}=2.280 \\
& \text { Round To 1-decimal } \\
& \text { Round to whole } \\
& \text { Round up to whole } 3
\end{aligned}
$$

